19,356 research outputs found

    Young people’s experiences using electric powered indoor-outdoor wheelchairs (EPIOCs): Potential for enhancing users’ development?

    Get PDF
    Purpose: To examine the experiences of severely physically disabled young people using electric powered indoor/outdoor chairs (EPIOCs). Methods: A priori interview questions examined young people’s functioning with EPIOCs, pain and discomfort with EPIOC use and accidents or injuries resulting from EPIOC use. Eighteen young people (13 males and 5 females) aged 10 -18 (mean 15) years were interviewed by telephone using a qualitative framework approach. Participants were interviewed 10 -19 (mean 14.5) months after delivery of the chair. Diagnoses included muscular dystrophy (n = 10), cerebral palsy (n = 5), and ‘other’ (n =3). Results: Many children reported positive functioning following EPIOC use, including increased independence and social activities like wheelchair football. However, EPIOC use was also associated with pain and discomfort, as well as perceived lack of safety, and minor accidents. Most young people and their families were fairly satisfied with the service and provision of their wheelchairs. Conclusions: The findings suggest that disabled children’s development may benefit from the use of electric powered indoor/outdoor wheelchairs, although the advantages may come at certain costs to young people’s perceived and real safety. Recommendations to powered wheelchair providers include the demonstrated need for additional driving training as these young people mature

    Two Stages in the evolution of binary alkali Bose-Einstein condensate mixtures towards phase segregation

    Full text link
    Two stages of quantum spinodal decomposition is proposed and analyzed for this highly non-equilibrium process. Both time and spatial scales for the process are found. Qualitative agreement with existing data is found. Some cases the agreements are quantitative. Further experimental verifications are indicated.Comment: late

    Motion of Vacancies in a Pinned Vortex Lattice: Origin of the Hall Anomaly

    Full text link
    Physical arguments are presented to show that the Hall anomaly is an effect of the vortex many-body correlation rather than that of an individual vortex. Quantitatively, the characteristic energy scale in the problem, the vortex vacancy formation energy, is obtained for thin films. At low temperatures a scaling relation between the Hall and longitudinal resistivities is found, with the power depending on sample details. Near the superconducting transition temperature and for small magnetic fields the Hall conductivity is found to be proportional to the inverse of the magnetic field and to the quadratic of the difference between the measured and the transition temperatures.Comment: minor change

    Invalidity of Classes of Approximated Hall Effect Calculations

    Full text link
    In this comment, I point out a number of approximated derivations for the effective equation of motion, now been applied to d-wave superconductors by Kopnin and Volovik are invalid. The major error in those approximated derivations is the inappropriate use of the relaxation time approximation in force-force correlation functions, or in force balance equations, or in similar variations. This approximation is wrong and unnecessary.Comment: final version, minor changes, to appear in Phys. Rev. Let

    Geometric phases in dressed state quantum computation

    Full text link
    Geometric phases arise naturally in a variety of quantum systems with observable consequences. They also arise in quantum computations when dressed states are used in gating operations. Here we show how they arise in these gating operations and how one may take advantage of the dressed states producing them. Specifically, we show that that for a given, but arbitrary Hamiltonian, and at an arbitrary time {\tau}, there always exists a set of dressed states such that a given gate operation can be performed by the Hamiltonian up to a phase {\phi}. The phase is a sum of a dynamical phase and a geometric phase. We illustrate the new phase for several systems.Comment: 4 pages, 2 figure

    Magnus Force on Quantum Hall Skyrmions and Vortices

    Full text link
    We have discussed here the Magnus force acting on the vortices and skyrmions in the quantum Hall systems. We have found that it is generated by the chirality of the system which is associated with the Berry phase and is same for both the cases.Comment: 5 page

    Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons

    Full text link
    The thermal stability of graphene/graphane nanoribbons (GGNRs) is investigated using density functional theory. It is found that the energy barriers for the diffusion of hydrogen atoms on the zigzag and armchair interfaces of GGNRs are 2.86 and 3.17 eV, respectively, while the diffusion barrier of an isolated H atom on pristine graphene was only ~0.3 eV. These results unambiguously demonstrate that the thermal stability of GGNRs can be enhanced significantly by increasing the hydrogen diffusion barriers through graphene/graphane interface engineering. This may provide new insights for viable applications of GGNRs.Comment: 13 pages, 1 figure, 2 tables to appear in Appl. Phys. Let
    corecore